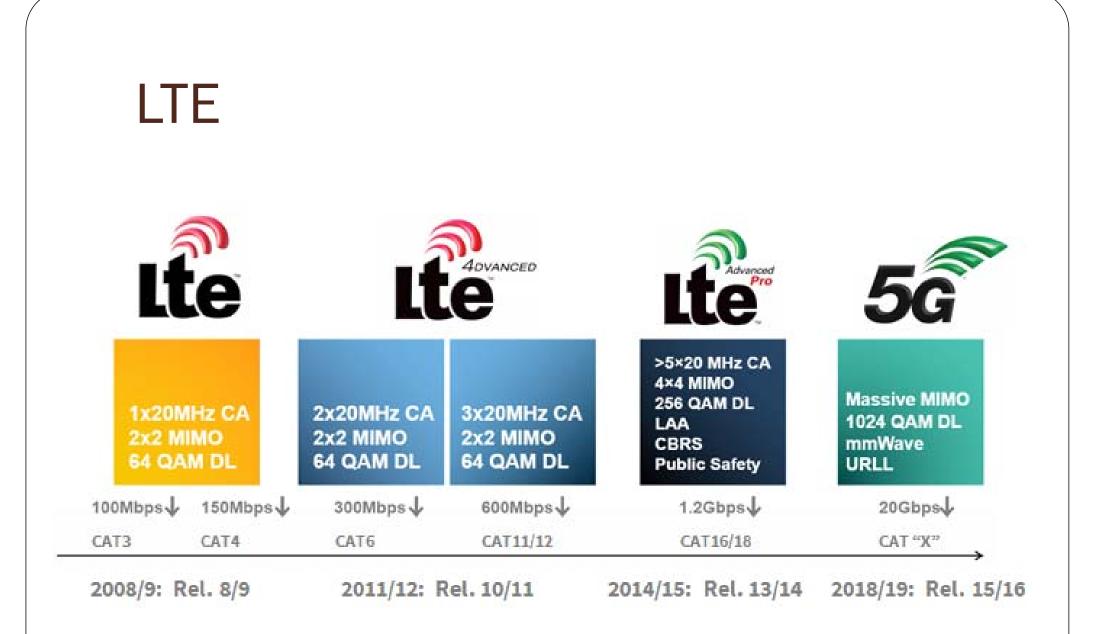
Principles of Communications EES 351

Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 4.8 QAM



IEEE 802.11ac

From Wikipedia, the free encyclopedia

IEEE 802.11ac is a wireless networking standard in the 80 The standard was developed in the IEEE Standards Assoc retroactively labelled as Wi-Fi 5 by Wi-Fi Alliance.^{[3][4]}

Data ra	ates and	d speed	edit]
MCS index ^[a]	Spatial Streams	Modulation type	Coding rate
0	1	BPSK	1/2
1	1	QPSK	1/2
2	1	QPSK	3/4
3	1	16-QAM	1/2
4	1	16-QAM	3/4
5	1	64-QAM	2/3
6	1	64-QAM	3/4
7	1	64-QAM	5/6
8	1	256-QAM	3/4
9	1	256-QAM	5/6
0	2	BPSK	1/2
1	2	QPSK	1/2
2	2	QPSK	3/4
3	2	16-QAM	1/2
4	2	16-QAM	3/4
5	2	64-QAM	2/3
6	2	64-QAM	3/4
7	2	64-QAM	5/6
8	2	256-QAM	3/4
9	2	256-QAM	5/6

Three Forms of QAM Emphasize that there are two messages 1 $x_{\text{QAM}}(t) = 3\sqrt{2}\cos(2\pi f_c t) + 4\sqrt{2}\sin(2\pi f_c t)$ $\Leftrightarrow 3\sqrt{2}\angle 0^\circ + 4\sqrt{2}\angle - 90^\circ \approx 5\sqrt{2}\angle - 53^\circ$ $\Leftrightarrow 5\sqrt{2}\cos(2\pi f_c t + (-53^\circ))$ Emphasize that the messages are embedded in both amplitude and phase of the carrier $-ie^{jx} = -i\cos(x) + \sin(x)$ $e^{jx} = \cos(x) + j\sin(x)$ $\cos(x) = \operatorname{Re}\{e^{jx}\}$ $\sin(x) = \operatorname{Re}\{-je^{jx}\}$ 3 $x_{\text{QAM}}(t) = 3\sqrt{2}\text{Re}\{e^{j2\pi f_c t}\} + 4\sqrt{2}\text{Re}\{-je^{j2\pi f_c t}\}$ $= \sqrt{2} \operatorname{Re}\{(3-4j)e^{j2\pi f_c t}\}$ Emphasize the use of the combined complexvalued representation of the two messages.

Three Forms of QAM Emphasize that there are two messages $x_{\text{OAM}}(t) = m_1(t)\sqrt{2}\cos(2\pi f_c t) + m_2(t)\sqrt{2}\sin(2\pi f_c t)$ $\Leftrightarrow m_1(t)\sqrt{2}\angle 0^\circ + m_1(t)\sqrt{2}\angle - 90^\circ$ $= E(t)\sqrt{2} \angle \phi(t)$ Emphasize that the messages are embedded in $\Leftrightarrow \sqrt{2}E(t)\cos(2\pi f_c t + \phi(t))$ 2 both amplitude and phase of the carrier $e^{jx} = \cos(x) + j\sin(x)$ $-je^{jx} = -j\cos(x) + \sin(x)$ $\cos(x) = \operatorname{Re}\{e^{jx}\}$ $\sin(x) = \operatorname{Re}\{-je^{jx}\}$ $x_{\text{QAM}}(t) = m_1(t)\sqrt{2}\text{Re}\{e^{j2\pi f_c t}\} + m_2(t)\sqrt{2}\text{Re}\{-je^{j2\pi f_c t}\}$ 3 $= \sqrt{2} \operatorname{Re}\{(m_1(t) - jm_2(t))e^{j2\pi f_c t}\}$

Emphasize the use of the combined complexvalued representation of the two messages.